Cohesin deficiency and myeloid expansion: from mechanisms of action to novel therapeutic routesAlmost 50% of all acute myeloid leukemias (AML) in elderly patients occur secondary to age-related pre-leukemic conditions known as myelodysplastic syndromes (MDS). The evolution from MDS to AML ultimately leads to a dismal prognosis. Recent evidence has shown that cohesin member mutations predispose towards premature hematopoietic aging, MDS and leukemic progression. Cohesin is an epigenetic complex that controls the interaction between promoters and enhancers and, therefore, supervises transcription.
We and others have shown that cohesin actively maintains gene regulatory homeostasis, with deficiency of cohesin subunits preferentially impairing inducible gene expression, such as the terminal erythroid differentiation, lymphoid maturation or interferon response. Conversely, our newer data show that cohesin is dispensable for the myeloid commitment. Moreover, cohesin-deficient myeloid progenitors surprisingly express abundant H3K27ac (an activation histone mark) at myeloid development genes, where they redistribute the remaining cohesin. These events phenotypically lead to myeloid expansion. We note a similar pattern in a murine
Flt3-ITD/Npm1c AML model. Here, cohesin perturbation upregulates a transcriptional program of immune checkpoints and leukemic stem cell (LSC) markers and causes an increase of >100x the number of LSCs.
With this project, I propose that a comprehensive evaluation of causes and paths of cohesin deficiency-associated myeloid proliferation, both in normal hematopoiesis and in models of MDS and AML, will identify opportunities of prevention of AML progression. Based on this hypothesis, I aim to discover the mechanisms that dictate the myeloid expansion in cohesin deficient hematopoiesis and establish therapeutic strategies to either prevent disease progression or to specifically target cohesin-mutated myeloid neoplasia.
Mentor: Univ.-Prof. Dr. med. Matthias Theobald, III. Medical Department (Hematology, Oncology, Pneumonology)
Publications:
1. Sasca D, Yun H, Giotopoulos G, Szybinski J, Evan T, Wilson NK, Gerstung M, Gallipoli P, Green AR, Hills R, Russell N, Osborne CS, Papaemmanuil E, Göttgens B, Campbell P, Huntly BJP. Cohesin-dependent regulation of gene expression during differentiation is lost in Cohesin-mutated myeloid malignancies. Blood. 134 (24), 2195-2208 2019 Dec 12.
2. Sasca D, Szybinski J, Schüler A, Shah V, Heidelberger J, Haehnel PS, Dolnik A, Kriege O, Fehr EM, Gebhardt WH, Reid G, Scholl C, Theobald M, Bullinger L, Beli P, Kindler T. NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML. Blood. 2019 May 23;133(21):2305-2319.
3. Sasca D, Hähnel PS, Szybinski J, Khawaja K, Kriege O, Pante SV, Bullinger L, Strand S, Strand D, Theobald M, Kindler T. SIRT1 prevents genotoxic stress induced p53 activation in acute myeloid leukemia. Blood. 2014 Jul 3;124(1):121-33.
4. Yun H, Narayan N, Vohra S, Mupo A, Giotopoulos G, Madrigal P, Sasca D, Lara-Astasio D, Horton SJ, Agrawal-Singh S, Meduri E, Basheer F, Marando L, Gozdecka M, Dovey OM, Castillo-Venzor A, Wang X, Gallipoli P, Müller-Tidow C, Osborne CS, Vassiliou GS, Huntly BJP. Mutational synergy coordinately remodels chromatin accessibility, enhancer landscape and 3-Dimensional DNA topology to alter gene expression during leukemia induction. Nature Genetics 2021 Sep 23.
5. Shah V
#, Giotopoulos G
#, Osaki H
#, Meyerhöfer M, Meduri E, Schubert B, Yun H, Horton SJ, Agrawal-Singh S, Haehnel PS, Basheer F, Kühn MWM, Guezguez B, Theobald M, Kindler T, Gallipoli P, Prinjha RK, Huntly BJP*, Sasca D*. Acute resistance to BET inhibitors remodels compensatory remodeling programs via p300 co-activation. *equal contribution and correspondence. Revised manuscript in preparation, pre-print doi:
doi.org/10.1101/2022.09.14.507850.
* Shared first authorship;
# Co-corresponding authorship
Further information:
https://www.unimedizin-mainz.de/3-med/arbeitsgruppen/ag-sasca/ag-sasca/startseite-home.html